Key Insights from the Food, Agriculture, and Forests (FAF) Climate Scenario Tool

February 2023 Update

wbcsd

Purpose and overview

Purpose

This document guides users of the Food, Agriculture, and Forests Climate Scenario Tool with underlying insights on drivers and trends across scenarios.

We offer an overview of the **production and price outputs** for **select regions and commodities**, where trends may not be easily discerned.

Prices are indexed, with 2020 = 100

Production is shown in megatons dry matter / year

This document is based on modeling and supporting analysis by Vivid Economics, among other sources.

Overview

Scenarios and scope

- Scenario narratives and drivers
- Key input assumptions and outputs
- Overview of input variables and commodities coverage

2 Trends and insights

- Key trends, including global and regional insights, for each commodity group, and specific commodities where relevant
 - Cereals
 - $\circ \quad \text{Oil Crops}$
 - Sugar Crops
 - Animal Products
 - o Forest Products

Content

Scenarios and scope

Commodities Overview

Cereals

Oil Crops

Sugar Crops

Animal Products

Forest Products

The Food, Agriculture, and Forests Climate Scenario Tool reports business variables across 23 commodities and 18 regions between 2020-2050 under five scenarios

Coverage

Types

Regions 18 regions, including 6 large individual countries

Timeframe

Reported between 2020 – 2050, in 5-years intervals. Model runs up to 2100 to define carbon budget

Scenario Drivers

Fixed across scenarios GDP, Population and trade

Varying across five scenarios

GHG prices, bioenergy production, area protection, diet shifts, food waste, innovation

Outputs

Commodities

- Crops
- Animal products
- Forestry products

Business variables

Market sizing Production and prices, market size, production share

Land use Yields growth, land use change

Environmental variables

Emissions, deforestation, and forestbased mitigation

Crops

- Maize, rice, temperate cereals, tropical cereals
- Sunflower, soybean, and other oilseeds
- Oil palm
- Cotton seed, groundnuts
- Sugar cane, sugar beet
- Fruits, vegetables, nuts
- Potatoes, pulses
- Tropical roots (e.g., cassava)

Animal products

- Beef, sheep, and goat
- Pork
- Poultry
- Dairy
- Eggs

Forest products

- Timber
- Pulpwood

The Food, Agriculture, and Forests Climate Scenario Tool provides outputs for five sectorspecific scenarios that would each present a different set of risks and opportunities

Scenario	Scenario description					
>3°C Historic Trends Scenario	>3°C Historic Trends represents a scenario in which climate action remains stable at current levels creating limited transition risks, but the world fails to limit global warming to manageable levels, resulting in substantial future physical risks. This scenario has low levels of transition risk.					
<pre><2°C Forecast Policy Scenario (IPR)</pre>	Under <2°C Forecast Policy Scenario (IPR), Climate action starts abruptly and late, around 2030, resulting in limited transition risk in early years. After 2030, transition risks ramp up significantly due to the sudden implementation of greenhouse gas (GHG) prices, area protection regulation, and a scale-up of bioenergy with carbon capture and storage (BECCS) capacity. This scenario has varying levels of transition risk over time.					
<2°C Coordinated Policy Scenario	<2°C Coordinated Policy Scenario is a scenario where timely policy and regulation work to curb emissions in an orderly fashion, decreasing the physical risk of climate change but increasing the transition risk. This scenario has moderate levels of transition risk.					
1.5°C Societal Transformation Scenario	1.5°C Societal Transformation Scenario represents strong, coordinated and prompt global policy action, as well as market responses (e.g. diet shifts and lower food waste) that result in widespread carbon pricing and land protection to enable decarbonization and limited physical impacts of climate change. This scenario has high levels of transition risk.					
1.5°C Innovation Scenario	Under 1.5°C Innovation Scenario, large demands from the energy system for BECCS, coupled with greater- than-historic yield growth in agriculture and government support for R&D, enables early decarbonization and limited physical impacts of climate change. This scenario has high levels of transition risk, but may be muted by technological progress.					

Ten key drivers characterize the five scenarios and their narratives

				Level of action	(low to high) Types of drivers → Policy action → To	ech-driven action
Input	assumptions	>3°C Historic Trends	<2°C Forecast Policy (IPR) ²	<2°C Coordinated Policy	1.5°C Societal Transformation	1.5°C Innovation
GDP & Pop/Trade Medium: IPCC Shared Socioeconomic Pathway 2 (SSP2), a 'middle of the road' scenario: Population grows from 7bn at 0.6% p.a. before slowing, 2070 peak at 9.5 bn. GDP doubles by 2050 Current patterns: Maintains current trade policy regime, without systematic liberalisation or de-liberalisation						
	GHG Prices \$/ton of CO ₂ e	Current prices \$4/ton CO ₂ e by 2050	Disorderly ~\$115/ton CO ₂ e by 2050 ³	Medium \$100/ton CO₂e by 2050	High \$153/ton CO₂e by 2050	
8	Bioenergy pathway Exajoules (EJ)	Current levels 8.8 EJ/year in 2050 (no 2nd generation bioenergy crops)	Disorderly Demand reaches moderate levels only after 2040 (72 EJ/yr 2nd generation)	Moderate 90 EJ/year by 2050 (72 EJ/yr 2nd generation)	Ambitious 100 EJ/year by 2050 (82 EJ/yr 2nd generation bioenergy crops)	High 130 EJ/year by 2050 (112 EJ/yr 2nd generation bioenergy crops)
	Diet shifts Caloric Shift between 2020 and 2050	No diet shift +18% demand for livestock products between 2020 and 2050	Medium diet shift -2% demand for livestock products between 202	20 and 2050	High diet shift -12% demand for livestock products between 2020 and 2050	Medium diet shift -2% demand for livestock products between 2020 and 2050
	Protected areas ¹	WDPA current protection 13% of terrestrial land surface	WDPA + Biodiversity hotspots (After 2025, limited to a subset of countries)	WDPA + Biodiversity hotspots	Meets 50x50 targets 50% terrestrial area by 2030	WDPA + Biodiversity hotspots
æ.	Input efficiency Nitrogen Uptake Efficiency (NUE), %	No change Global average <60% by 2050	Medium Global average ~65% by 2050			High NUE global average 70% by 2050
53	Yield-enhancing tech Per annum growth crop yields	Low Crop yields grow < 1%p.a.	Medium Crop yields grow at ~1% p.a.			High Yields grow >1% p.a.
	Food waste reductions % of food wasted	No reduction 33% food is wasted by 2050	Medium reduction 20% by 2050 (faster reduction from 2030 to 2050)	Medium reduction 20% by 2050 (smooth reduction)	High reduction 16.5% by 2050 (UN Sustainable Develop Goal 12.3)	Medium reduction 20% by 2050
	Other climate policies	Nationally determined policies on reforestation/ avoided deforestation/	Adjusted land-use Nationally Determin Lower forest NDC for China	ed Contributions (NDCs)		
	Timber demand pathways	Low demand . Demand for timber in construction remains low (~0.5%)	Medium demand. Demand for timber in o	construction of new builds grows to 10%.		High demand. Demand for timber in construction of new builds grows to 50%.

1. "Protected areas" refers to Cat I, VI World Database for Protected Areas.

2. Action starts between 2025 and 2030.

3. Starting 2025, high-income regions begin to experience higher GHG prices than emerging and low-income economics

Content

Scenarios and scope

Commodities Overview

Cereals

Oil Crops

Sugar Crops

Other Crops

Animal Products

Forest Products

Commodities overview

The following section introduces how key drivers impact production and prices across five commodity groups under historical trends and climate transition scenarios.

Cereals

Temperate cereals like wheat and tropical cereals, such as maize.

Tropical oil crops, such as oil palm and soybean, and temperate oil crops, such as rapeseed.

Sugar crops

Sugar cane (tropical) and sugar beet (temperate). $\left\{ \right\}$

Animal products

Poultry, eggs, pork, beef, sheep, and goat. Forest products

Timber and pulpwood.

Content

Scenarios and scope

Commodities Overview

Cereals

Oil Crops

Sugar Crops

Other Crops

Animal Products

Forest Products

Potential risk

Future opportunity

Key Drivers

Food waste reductions

By 2050, food waste reduces by 40-50% under climate transition scenarios, leading to a substantial decrease in food demand, particularly in high income economies

 GHG pricing increases the cost of producing cereals, particularly in scenarios and regions with high GHG prices

Increases

\$

agricultural

production costs

Bioenergy usage

Bioenergy crops production will shift completely from first to second generation crops by 2050, decreasing demand for cereals, like maize for fuel use

Reduces demand

for maize and

other first gen

bioenergy corps

- **Yield growth**
 - By 2050, average crop vields could increase up to 69% globally under climate transition scenarios. Yield growth could reduce land competition and prices for cereals, particularly in high income economies

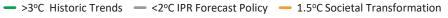
Reduces land

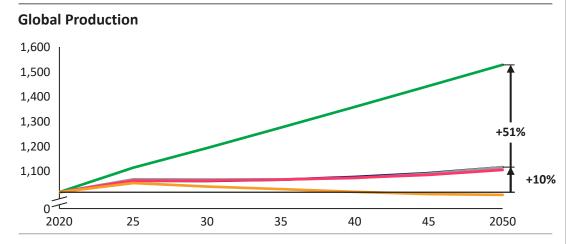
Key Trends

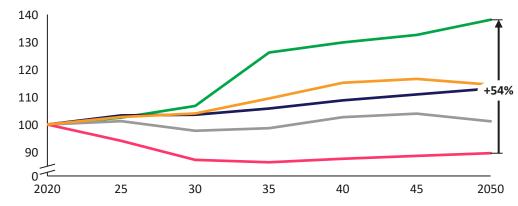
Production

- \$
- Under climate transitions, cereal prices ٠ increase above Historic Trends in the first decade as climate policies increase pressure on the land use system

- Under climate transitions, temperate ٠ cereal production stabilizes as significant food waste reductions dampen growth
- Tropical cereal production faces relatively fewer demand headwinds from further food waste decline since food waste is already limited in these regions




Maize: Food waste and corn ethanol demand reductions result in maize production stabilizing or declining under climate transitions



- <2°C Coordinated - 1.5°C Innovation

Maize, Global, Production (Mt DM yr.) and Indexed Prices (2020=100)

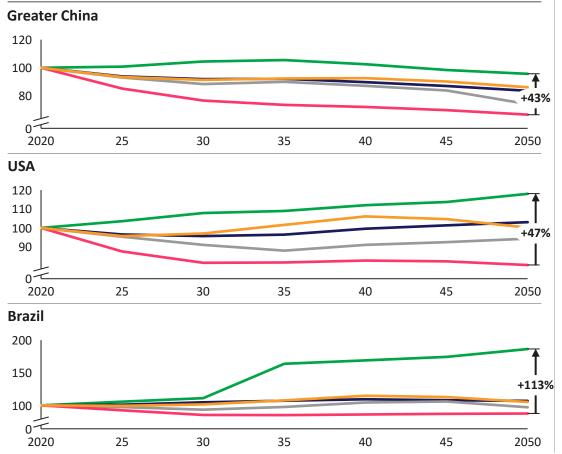
Global Prices

	Protected areas	Ī	Food waste reductions	\$	GHG Prices	20-0	Input efficiency
9	Bioenergy pathway	()*	Diet shifts		Yield-enhancing tech		
Sce	nario-specific va	lues	and rationale				
Sce	narios		Rationale				
	3°C Historic rends		Global production incre incomes grow, leading cheap, cropland expan increases competition.	to highe sion beco	r demand for food, fee omes more costly arou	d, and fue nd 2030 a	el. Initially as land scarcity
Ti	limate ransition cenarios		Production remains flat across most transition scenarios after 2025 as food waste and demand for first generation biofuels and feed decline, thus reducing need for maize. Prices under climate transition scenarios remain below historical trends, as maize demand remains close to 2020 levels.				
	<2°C Forecast Policy (IPR)		Prices are lower in 2°C IPR than 2°C Coordinated because climate action is less ambitious in Brazil, Greater China, and Tropical Africa, where maize is largely produced, reducing land competition.				
	<2°C Coordinated		2°C Coordinated has the second highest prices as climate action is orderly and moderately ambitious, but there is no land use mechanism strong enough to fully offset its effect on land competition (e.g., productivity increase / demand reductions)				ng enough to
	1.5°C Societal Transformation		1.5°C Social Transform constraints from ambit greater food waste red	ious area			
	1.5°C Innovation		1.5°C Innovation has th in land competition fro under 1.5°C Societal Tr	m ambit	ious area protections, v	vhich are	not as strong as

Maize: production trends by region

Maize is mostly used to produce food and fuel

- >3°C Historic Trends - <2°C IPR Forecast Policy - 1.5°C Societal Transformation Food waste reductions 0-0 Input efficiency Protected areas \$ **GHG** Prices - <2°C Coordinated 1.5°C Innovation 4 β Bioenergy pathway Diet shifts ЛĊ Yield-enhancing tech Maize in selected markets, Production (Mt DM yr.) Scenario-specific values and rationale Maize is mostly used for feed production, particularly for ruminants and poultry in China and Brazil Rationale **Scenarios** USA >3°C Historic Growth in livestock production increases maize demand (as feed) across all 400 Trends regions. In Brazil, a large share of total maize production in 2020 is exported 300 +120% Climate USA and Greater China: Food waste reductions, declining first-generation 200 bioenergy demand, and diet shifts toward alternative proteins all lower maize Transition 07 production under climate transitions. In the USA, production declines **Scenarios** 2020 25 40 45 2050 30 35 substantially below 2020 levels, as dietary shifts reduce feed demand. In Greater China, production peaks between 2030 and 2035 as the population **Greater China** 4 starts declining. 400 350 Brazil: Land protection and high deforestation costs push Brazil to reduce its 300 +52% maize exports, halving production growth. Across all three scenarios, Brazil 250 becomes a net importer between 2030 and 2040. Additionally, the medium 0diet shift (or high diet shift in the 1.5 Societal Transformation scenario) and 2020 25 45 2050 30 35 40 food waste reduction decreases overall demand for feed production from tii Brazil maize. 160 140 120 100 0~ 25 30 2050 2020 35 40 45

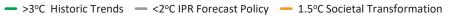


Maize: price trends by region

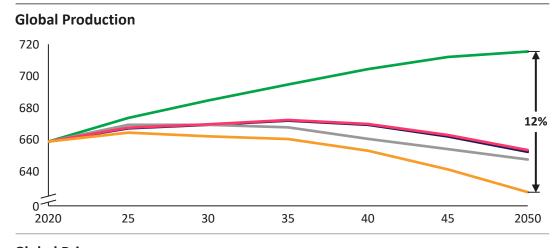
Maize is mostly used to produce food and fuel

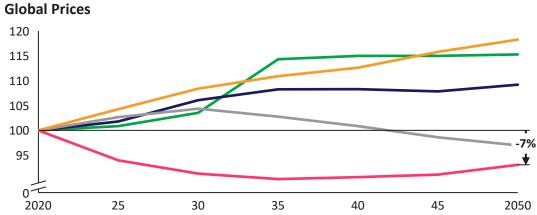
- >3°C Historic Trends <2°C IPR Forecast Policy 1.5°C Societal Transformation
- <2°C Coordinated 1.5°C Innovation

Price of Maize in selected markets, Indexed Prices (2020=100)



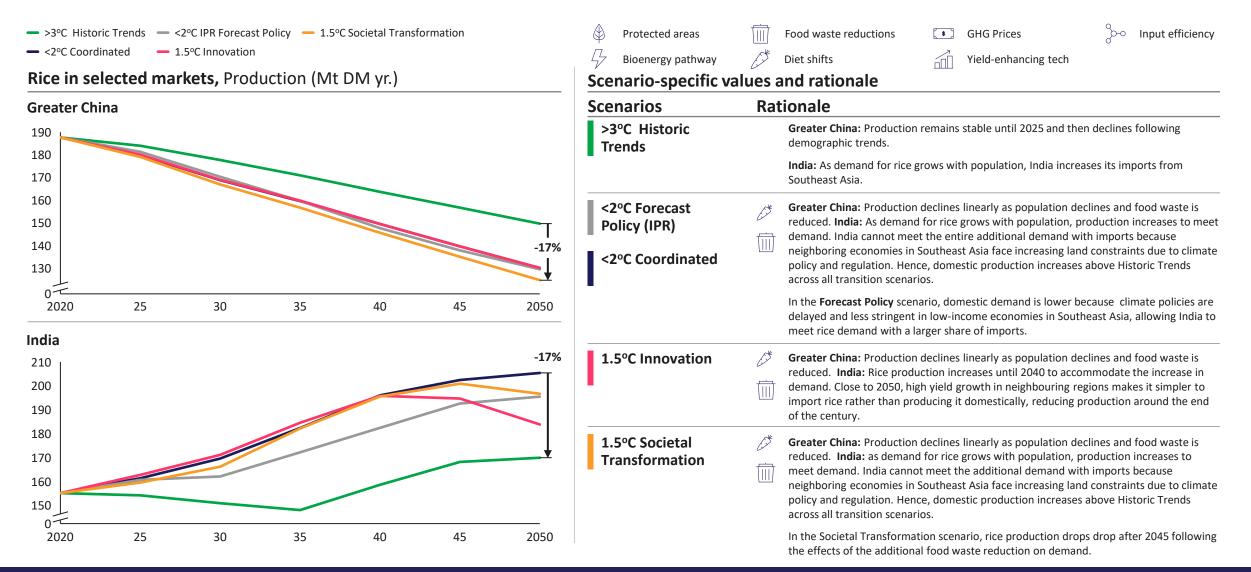
Scenario-specific val	Ratior					
>3°C Historic Trends	Nation	USA & Brazil: Grow increases prices.	ulation de	feed and food increases cline starting in 2025 de		
Climate Transition Scenarios		All regions: The decline in demand in combination with limited climate policy action and transition costs reduces prices below Historic Trends.				
1.5°C Innovation	<u>}</u> -0	All regions: Substa to all other scenari		luctivity growth leads to	o lower p	orices, relative
		constrained under	all transit	ater China, a country th ion scenarios and wher e pressure on the prod	e increa	ses in


Rice: Production growth slows under climate transitions as food waste declines, while prices fluctuate depending on policies in producing regions

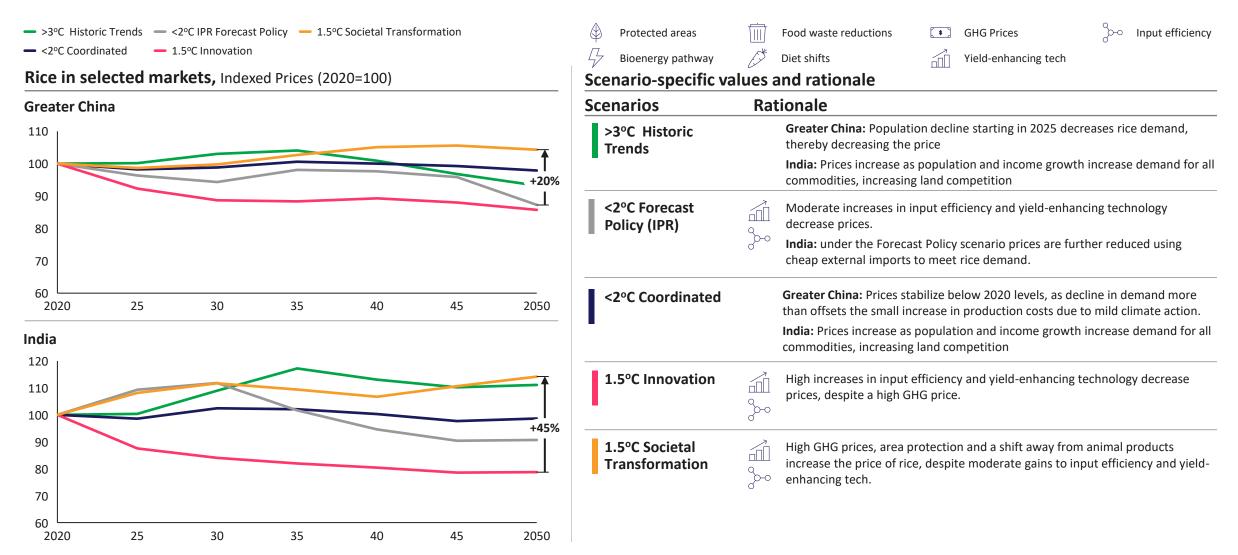


- <2°C Coordinated - 1.5°C Innovation</p>

Rice, Global, Production (Mt DM yr.) and Indexed Prices (2020=100)

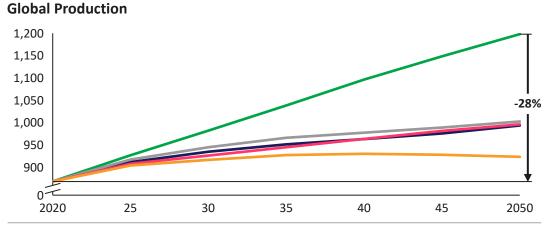

٢	Protected areas	Ī	Food waste reductions	\$	GHG Prices	<u>}-</u> 0	Input efficiency
9	Bioenergy pathway	()*	Diet shifts		Yield-enhancing tech		
Sce	nario-specific val	ues a	and rationale				
Sce	narios	Rat	ionale				
	3°C Historic ends		Global production increases as population and income grow, leading to higher demand for food. The decline in Greater China's population after 2030 curbs demand growth. Initially cheap, cropland expansion becomes more costly around 2030 as land scarcity increases competition. The cost increase is passed through to farmgate prices.				
Т	imate ansition cenarios	Ī	Production remains flat food waste reductions the relationship betwee impact of population ch China's population dyn transition scenarios.	reduce n en food o nanges o	eed for rice. Food wast lemand and income gro n demand and producti	te reduct owth, lov ion for rid	ions weaken vering the ce. Hence,
	1.5°C Societal Transformation	٩	Key rice exporters are p protections and nation countries, like India, mu costs are passed throug	al climate ust produ	commitments. Histori ice rice domestically at	cally net	-importing
	1.5°C Innovation	Â	Prices decline as yields and protection policies rice producing regions.				-

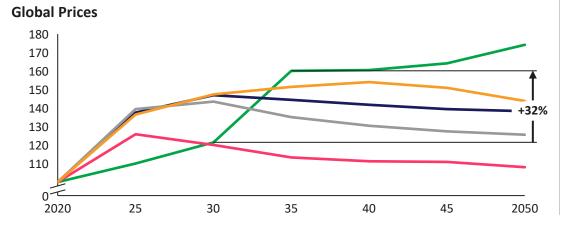
Rice: production trends by region


Rice is mostly used to produce food

Rice: price trends by region

Rice is mostly used to produce food

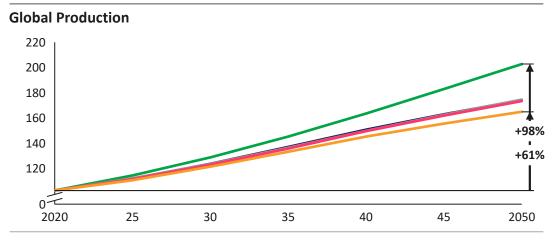




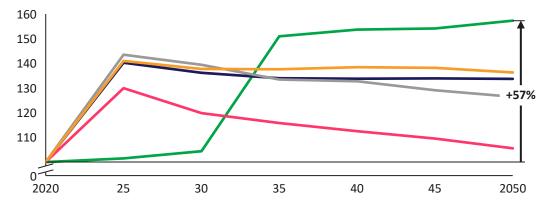
Temperate Cereals: Production growth slows under climate transitions as food waste declines; ambitious climate policies exacerbate this trend

- >3°C Historic Trends <2°C IPR Forecast Policy 1.5°C Societal Transformation
- <2°C Coordinated 1.5°C Innovation

٢	Protected areas	T	Food waste reductions	\$	GHG Prices	20-0	Input efficiency
\$	Bioenergy pathway		Diet shifts		Yield-enhancing tech	0	
Sce	enario-specific val	ues a	and rationale				
Sce	enarios	Rat	ionale				
	3°C Historic rends		Global production incre income grow, leading to expansion becomes mo competition. The cost in	o higher ore costly	demand for food. Initial around 2030 as land so	lly cheap carcity in	, cropland creases
Τ	limate ransition cenarios	\$ 1	Production remains flat waste reductions reduc scenarios increase abov and regulation increase	ces need ve histori	for temperate cereals.	Prices un ecade, as	nder transition
	<2°C Forecast Policy (IPR)		2°C IPR is lower than 2 ^c in large producing regio land competition		nated because climate as: India, Greater China		
	<2°C Coordinated	٤	2°C Coordinated has th moderately ambitious, fully offset its effect on reductions)	but ther	e is no land use mechan	nism stro	ng enough to
	1.5°C Societal Transformation	ے ا	constraints from ambit	ious area	as the highest prices du protection in high-incc reased food waste redu	ome ecor	
	1.5°C Innovation		1.5°C Innovation has the land competition broug not as strong as under	ght on by	ambitious climate action		


Cereals

Tropical cereals: Production rises across all scenarios as food demand in tropical regions outpace demand headwinds from food waste reductions



- >3°C Historic Trends <2°C IPR Forecast Policy 1.5°C Societal Transformation
- <2°C Coordinated 1.5°C Innovation

Tropical Cereals, Global, Production (Mt DM yr.) and Indexed Prices (2020=100)

٢	Protected areas		Food waste reductions	\$	GHG Prices	200	Input efficiency
9	Bioenergy pathway	()*	Diet shifts		Yield-enhancing tech		
Sce	nario-specific va	lues a	and rationale				
Sce	narios	Rat	ionale				
	3°C Historic ends		Global production incre grow, leading to higher becomes more costly a although land is not as passed through to farm	demanc round 20 constraii	l for food. Initially chea 30 as land scarcity inc ned in tropical regions.	np, croplar reases con	nd expansion mpetition,
Tı	limate ransition cenarios		Production increases ac regions are not as land increase above historic regulation increase pre	constrai al trends	ned. Prices under clima in the first decade, as	ate transit	ion scenarios
	<2°C Forecast Policy (IPR)		2°C IPR is lower than 2° in large producing regic competition				
	<2°C Coordinated	٤	2°C Coordinated has th moderately ambitious, fully offset its effect on reductions)	but ther	e is no land use mecha	nism stro	ng enough to
	1.5°C Societal Transformation	\$ []]]	1.5°C Social Transforma land constraints coming due to increased food v	g from ai	mbitious area protection		
	1.5°C Innovation		1.5°C Innovation has th land competition broug not as strong as under	ht on by	ambitious climate act		

Content

Scenarios and scope

Commodities Overview

Cereals

Oil Crops

Sugar Crops

Other Crops

Animal Products

Forest Products

\$

Potential risk

Future opportunity

Key Drivers

Diet shifts

Shifts in diets away from animal proteins will increase the use of vegetable oils to produce alternatives, and reduce the use of oil crops for feed production

GHG prices

 GHG pricing will increase the cost of producing oil crops, particularly in scenarios/regions with high GHG prices. In tropical regions GHG prices drive land competition

Bioenergy

- **Bioenergy crops** production will shift from first to second generation crops by 2050, limiting the demand for oil crops like soybean for fuel use
- By 2050, average crop vields could increase up to 69% globally under climate transition scenarios. Yield growth may reduce land competition and prices for temperate oil crops, increasing their competitive advantage
- Reduces land competition \$

Yield growth

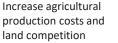
Key Trends

Prices

٠

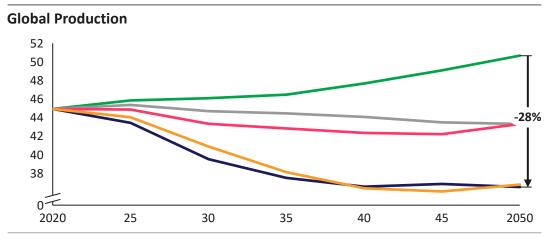
Oil crop prices rise under transition scenarios as climate policies increase pressures on the land use system, raising production costs. For some commodities like soybean, diet shifts and substitution lead to varying price trends

Production

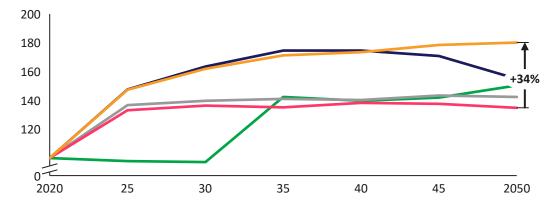

Production varies under transition scenarios, depending on how climate action affects land scarcity in temperate and tropical regions. For example, production of temperate oil crops will be relatively higher under 1.5°C Innovation, where higher productivity reduces production costs in Europe

Increases demand for vegetable oils Reduces feed

Reduces demand for soybean and other first gen bioenergy corps


and increases the competitive advantage of temperate oil crops

wbcsd


Sunflower: Food waste declines alongside policy-driven costs reduce sunflower oil demand under climate transitions

- >3°C Historic Trends <2°C IPR Forecast Policy 1.5°C Societal Transformation
- <2°C Coordinated 1.5°C Innovation

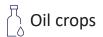
Sunflower, Global, Production (Mt DM yr.) and Indexed Prices (2020=100)

٢	Protected areas	m	Food waste reductions	\$	GHG Prices	<u>}</u>	Input efficiency	
\$	Bioenergy pathway	<u> </u>	Diet shifts		Yield-enhancing tech	0		
Sce	nario-specific va	lues a	ind rationale					
Sce	narios	Rat	ionale					
	3°C Historic ends		Demand for vegetable of population. Initially che 2030 as land scarcity in through to farmgate pr	ap, cropl creases c	and expansion become	s more c	costly around	
Т	limate ransition cenarios		 Prices increase above historic trends in the first decade, as climate policies regulation increase pressure on the land use. Food waste reduction reduce sunflower demand. A shift away from livestock products increases demand 					
	<2°C Forecast Policy (IPR)	\$	Prices fall as biodiversit and Former Soviet Unic		•			
	1.5°C Societal Transformation	٩	Key producers (such as ambitious climate polic vegetable oils and gets	ies, so su	nflower oil is less comp	etitive tl	han other	
I	1.5°C Innovation		Food waste reduction d enhancing technologies Russia and Europe.			-	•	

Sunflower: production trends by region

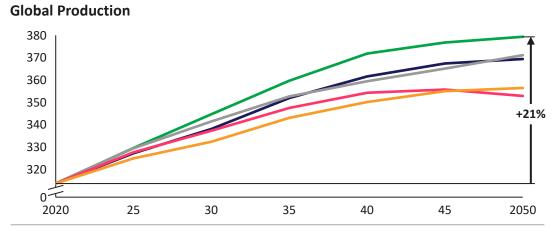
Sunflower can be used to produce edible vegetable oil as well as fuel

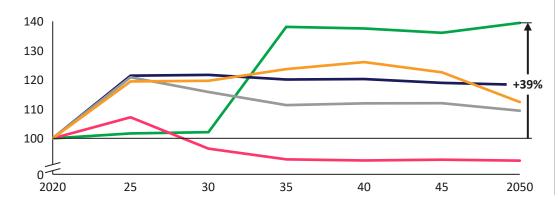
 >3°C Historic Trends — <2°C IPR Forecast Policy — 1.5°C Societal Transformation <2°C Coordinated — 1.5°C Innovation 							Protected areas		Food waste reductions Image: GHG Prices Image: GHG Prices	
							Bioenergy pathway	()*	Diet shifts Yield-enhancing tech	
Sunflower	r in select	ed markets	, Production	(Mt DM yr.)			Scenario-specific values and rationale			
Former Sov	iet Union (E	Excl. Russia)					Scenarios	Rat	tionale	
18 16						-16%	>3°C Historic Trends		Generally, production increases with demand (population and income). EU & UK: Production declines following a reduction in demand for vegetable oils from sunflower in favor of other tropical oil crops.	
14 0 2020	25	20	25	10	45	2050	<2°C Forecast Policy (IPR)		Former Soviet Union, excluding Russia: Imports for sunflower remain high until the effect of climate policies in neighboring regions increases prices, making domestic production competitive with imports.	
Russia	25	30	35	40	45	2050	<2°C Coordinated	٢	Russia: Across all transition scenarios production declines following an increase in land competition in Russia, increasing agricultural production costs. The exception is the Forecast Policy scenario where lower levels of area protection and slower policy uptake keep domestic production competitive in the first decade.	
15 10 5						-53%			EU & UK: Coordinated - Production declines following a reduction in demand for vegetable oils from sunflower in favor of other tropical oil crops. Forecast Policy - lower levels of land protection in Europe increase available space for agricultural production and reduce the need to meet demand for vegetable with imports.	
2020 EU & UK	25	30	35	40	45	2050	1.5°C Innovation		Former Soviet Union: As yields grow, demand is progressively met with domestic production increases with demand (population and income).	
10 8									EU & UK: Greater yield improvements in Europe increase available space for agricultural production and reduce the need for imports to meet vegetable oil demand	
6 4 2						-67%	1.5°C Societal Transformation	()*	Former Soviet Union: As land competition increases due to a ramp-up to in area protection, the region starts importing sunflower from neighboring countries after 2040.	
2020	25	30	35	40	45	2050		٢	EU & UK: Production declines following a reduction in demand for vegetable oils from sunflower in favor of other tropical oil crops.	


Sunflower: price trends by region

Sunflower can be used to produce edible vegetable oil as well as fuel

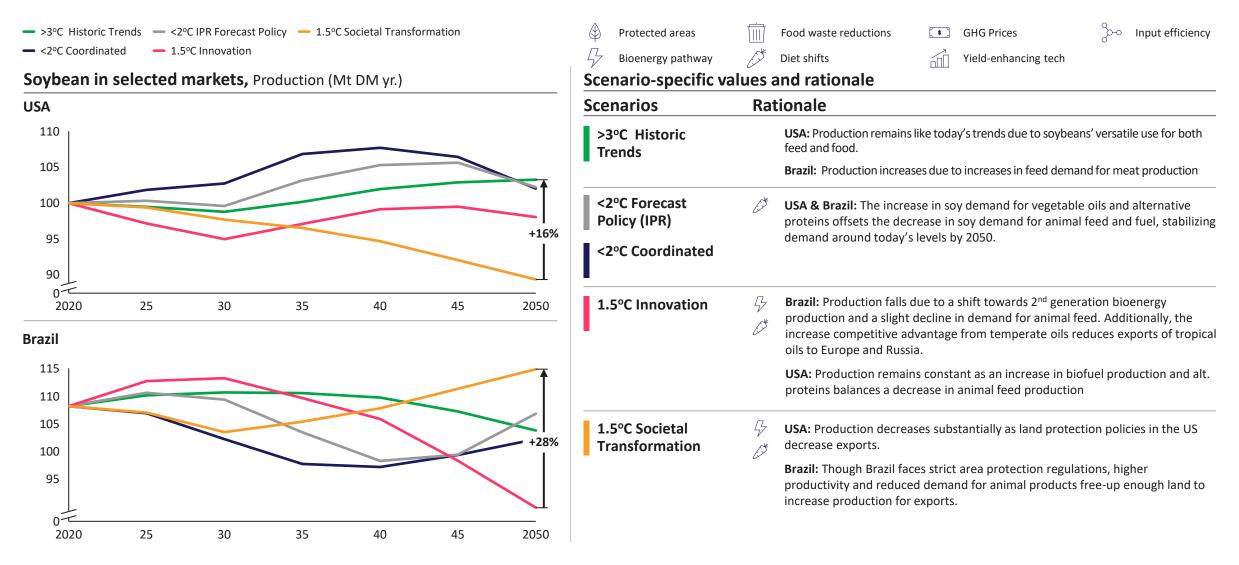
 >3°C Historic Trends — <2°C IPR Forecast Policy — 1.5°C Societal Transformation <2°C Coordinated — 1.5°C Innovation 	Protected areasBioenergy pathway	Food waste reductions Image: GHG Prices Image: GHG Prices Image: Diet shifts Image: GHG Prices Image: GHG Prices		
Sunflower in selected markets, Indexed Prices (2020=100)	Scenario-specific values and rationale			
Former Soviet Union (Excl. Russia)	Scenarios	Rationale		
150 140 130	>3°C Historic Trends	All regions: Initially cheap, cropland expansion becomes more costly around 2030 as land scarcity increases competition. EU and UK: As land availability is lower in this region, prices rise after 2035.		
120 110 100 90 80	% <pre><2°C Forecast Policy (IPR)</pre>	 Former Soviet Union: Moderate increases in technological innovation decrease prices, coupled with low GHG prices EU & UK: Moderate increases in technological innovation and stagnating demand decrease prices 		
2020 25 30 35 40 45 2050 EU and UK	<2°C Coordinated	 Former Soviet Union and EU & UK: Moderate increases in technological innovation, coupled with a medium diet shift and food waste reductions offset the medium increase in environmental policy and regulation, keeping price close 2020 levels 		
200	1.5°C Innovation	Former Soviet Union and EU & UK: High increases in innovation decrease prices through 2050, despite high GHG prices		
	1.5°C Societal Transformation	 Former Soviet Union and EU & UK: Moderate increases in technological innovation, coupled with a strong diet shift and food waste reductions, decrease land competition, keeping price stable at 2020 levels 		
2020 25 30 35 40 45 2050)			


Soybean: Production rises but growth slows under climate transitions as food waste declines, climate policy costs rise, and diets shift to alternative proteins



- <2°C Coordinated - 1.5°C Innovation</p>

Soybean, Global, Production (Mt DM yr.) and Indexed Prices (2020=100)



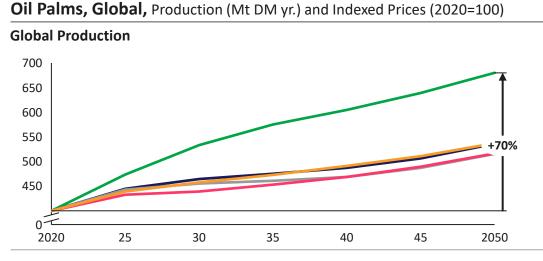
٢	Protected areas	Ē	Food waste reductions	\$	GHG Prices	2-0	Input efficiency
Ģ	Bioenergy pathway	<u>s</u>	Diet shifts		Yield-enhancing tech	0	
Sce	enario-specific va	lues	and rationale				
Sce	enarios	Ra	tionale				
	3°C Historic rends		Global production incre grow, leading to higher becomes more costly a cost increase is passed	r demand around 20	for food. Initially chea 30 as land scarcity incr	p, cropla	nd expansion
T	limate ransition cenarios		Production increases fr population and income		-2050 under climate tr	ansitions	scenarios as
	1.5°C Societal Transformation	<u> </u>	Diet shift is higher, lead higher use for human o as other commodities a	diets as a	substitute to animal pr	oteins. P	
	1.5°C Innovation	ò	Former Soviet Union a prices through 2050, d			novatior	n decrease

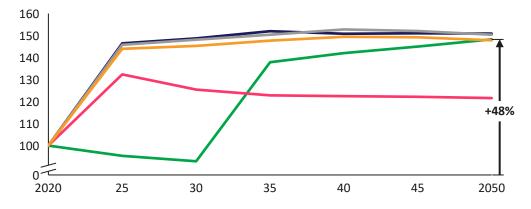
Soybean: production trends by region

Soybean can be used to produce animal feed, food (alt proteins), and biofuel

Soybean: price trends by region

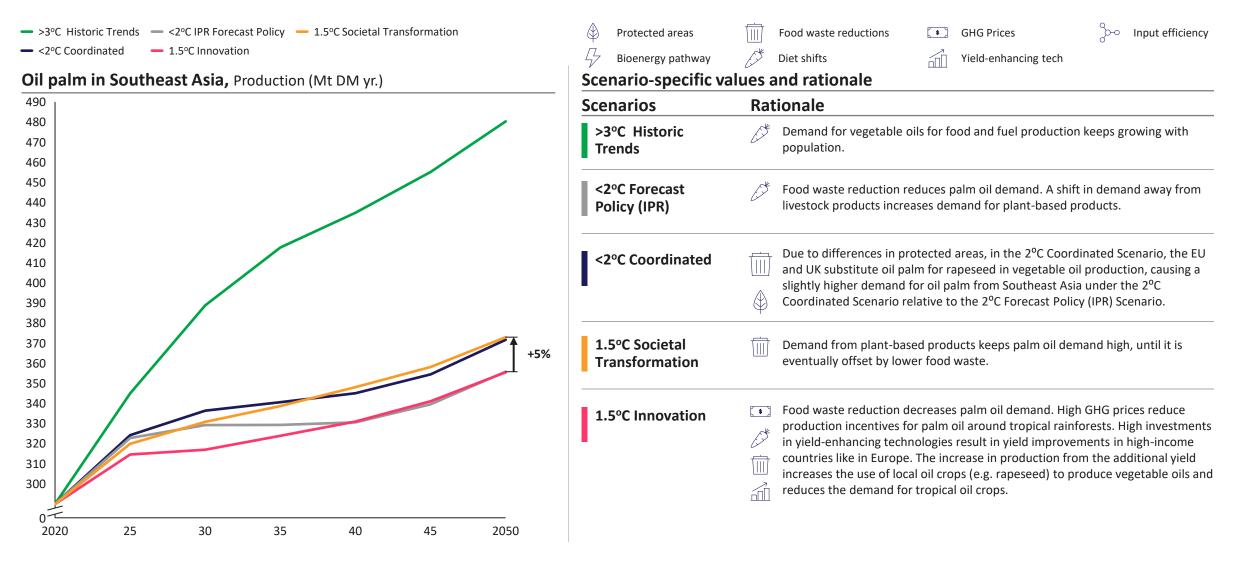
Soybean can be used to produce food (alt proteins) as well as fuel


 >3°C Historic Trends — <2°C IPR Forecast Policy — 1.5°C Societal Transformation <2°C Coordinated — 1.5°C Innovation 	 Protected areas Bioenergy pathway 	Food waste reductions Image: GHG Prices Image: GHG Prices Image: Diet shifts Image: Diet				
Soybean in selected markets, Indexed Prices (2020=100)		Scenario-specific values and rationale				
USA	Scenarios	Rationale				
160 140 +	>3°C Historic Trends	USA & Brazil: Initially cheap, cropland expansion becomes more costly around 2030 as land scarcity increases competition. The cost increase is passed through to farmgate prices				
120 100	<pre><2°C Forecast Policy (IPR) <2°C Coordinated</pre>	 USA: Climate action increases prices across all scenarios between 2020 and 2025. After 2025, yield growth and input efficiency offset the effect of GHG price growth, leading to a stabilization in commodity prices Brazil: Moderate increases in input efficiency and yield-enhancing technology 				
80 60 2020 25 30 35 40 45 20	 050	decrease prices are not enough to offset the increase in GHG prices which remain stable through to 2050 Prices are lower in the Forecast Policy scenario because Brazil doesn't set ambitious climate policies				
Brazil 160 140	1.5°C Innovation	 USA: After 2025, innovation in input efficiency and yield-enhancing technology reduces input and land costs, pushing down prices despite the high emission costs Brazil: Prices decline as innovation in yield enhancing technologies reduce land competition 				
100 80 60	1.5°C Societal Transformation	USA & Brazil: Moderate increases in input efficiency and yield-enhancing technology reduces pressures on the land use system, but high GHG prices raise and strict area protection regulation increase costs for the agricultural sector. These opposing forces cause a slight increase in price 2030-2040, when area protection increases are concentrated				
2020 25 30 35 40 45 20	050					



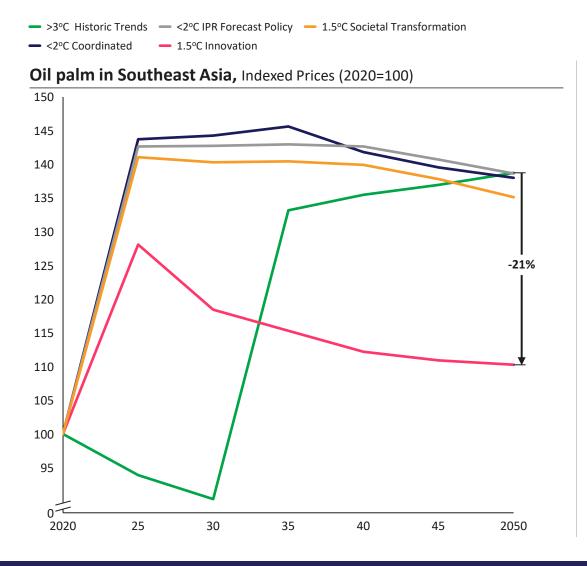
Oil Palms: Production rises but food waste declines alongside reduced demand for A Oil crops first generation biofuels slow growth under climate transitions

- >3°C Historic Trends <2°C IPR Forecast Policy 1.5°C Societal Transformation
- <2°C Coordinated 1.5°C Innovation


cenarios	Rationale
>3°C Historic Trends	Demand for vegetable oils for food and fuel production keeps growing with population.
Climate Transition Scenarios	Prices increase above historic trends in the first decade, as climate policies and regulation increase pressure on the land use system in SEA, where most palm oil is produced.
<pre><2°C Forecast Policy (IPR)</pre>	Food waste reduction reduces palm oil demand. A shift away from livestock products increases demand.
<2°C Coordinated	
1.5°C Societal Transformation	Demand from plant-based products keeps palm oil demand high, until i is eventually offset by lower food waste.
1.5°C Innovation	Food waste reduction decreases palm oil demand. High GHG prices reduce production incentives for palm oil around tropical rainforests. High investments in yield-enhancing technologies result in yield growth lowering prices

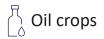
vbcsd

Oil palm: production trends by region

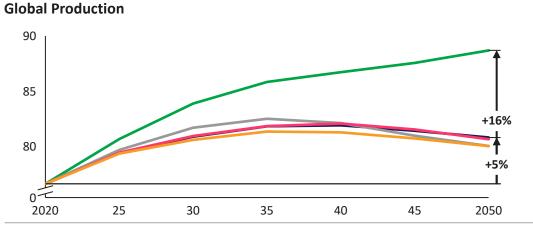

ට් Oil crops

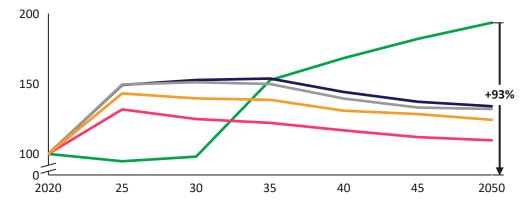
Oil palm is used to produce palm oil, a vegetable edible oil often used in plant-based products as a substitute for animal fat

Oil palm: price trends by region


Oil palm is used to produce palm oil, a vegetable edible oil often used in plant-based products as a substitute for animal fat

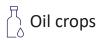
٢	Protected areas	İ	Food waste reductions	\$	GHG Prices	<u>}-</u> 0	Input efficiency
9	Bioenergy pathway	Ĭ	Diet shifts		Yield-enhancing tech	-	
Sce	enario-specific va	lues a	and rationale				
Sce	enarios	Rat	tionale				
	3°C Historic rends			•	nsion becomes more etition. The cost increa		
T	limate ransition cenarios			chnolog	es through 2025, acro ical innovation couple ices through 2050.		
	1.5°C Innovation		Prices are lowest due related production co		eased yields reducing	and co	mpetition and


Cotton Seed: Production growth rate slows from a decline in food waste and demand for feed, in which cotton seed is a key input

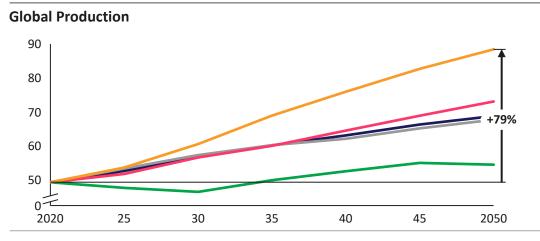

Cotton Seed is mostly used to produce feed and fiber

- >3°C Historic Trends <2°C IPR Forecast Policy 1.5°C Societal Transformation
- <2°C Coordinated 1.5°C Innovation

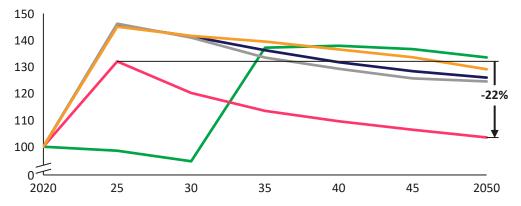
Cotton Seed, Global, Production (Mt DM yr.) and Indexed Prices (2020=100)


Global Prices

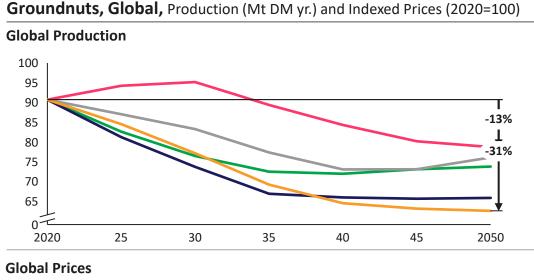
Scenario-specific values and rationale							
Scenarios	Rationale						
>3°C Historic Trends	Global production increases linearly from 2020-2050 as population and income grow, leading to higher demand for food, feed and fiber. Initially cheap, cropland expansion becomes more costly around 2030 as land scarcity increases competition. The cost increase is passed through to farmgate prices.						
Climate Transition Scenarios	In the first decades, prices under the transition scenarios increase above Historic trends as climate policies and regulation increase pressure on the land use system. As the effect of food waste reductions and diet shifts puts downward pressure on demand for feed, both prices and production stabilize.						
1.5°C Innovation	Prices are lowest under due to increased yields reducing land competition.						

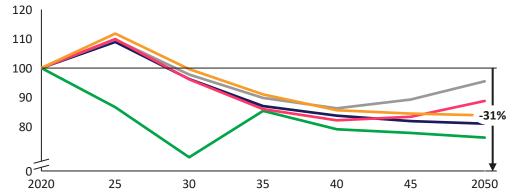

wbcsd

Groundnuts: Production growth rises under climate transitions as diets shift towards plant-based proteins in which groundnuts are a key ingredient



- ->3°C Historic Trends -<2°C IPR Forecast Policy 1.5°C Societal Transformation
- <2°C Coordinated 1.5°C Innovation




Scenarios	Rationale					
>3°C Historic Trends	Production growth is small due to lack of diet shifts. Initially cheap, cropland expansion becomes more costly around 2030 as land scarcity increases competition. The cost increase is passed through to farmgate prices.					
Climate Transition Scenarios	Prices under the transition scenarios increase above Historic Trends in the first decades as climate policies and regulation increase pressure on the land use system. Groundnuts are a key commodity for shifts in diet, raising their prices through 2050.					
1.5°C Societal Transformation	Production is high as this is a key commodity for shifts in diets. Prices are higher due to additional land constraints from area protection					
1.5°C Innovation	Prices are lowest, relative to other scenario, due to increased yield growth					

/bcsd

Other Oil Crops (incl. Rapeseed): Production decreases across all scenarios due to increasing demand and cost competitiveness for tropical substitutes

- >3°C Historic Trends <2°C IPR Forecast Policy 1.5°C Societal Transformation
- <2°C Coordinated 1.5°C Innovation

Scenarios	Rationale					
>3°C Historic Trends	Production declines, as lack of climate action and biodiversity protection makes the use of tropical oil crops relatively cheaper. Prices fluctuate following changes in land competition and land conversion costs in temperate regions: land conversion costs increase with land competition, leading to higher prices after 2030.					
<2°C Forecast Policy (IPR)	Production remains at or above Historic Trends through 2050, as lack of climate action and conservation in Eastern Europe and Russia reduces land competitions in temperate regions. This increases the competitive advantage o oils produced using temperate oil crops, such as rapeseed, increasing demand for these crops. The additional demand increased both production and prices above historic trends.					
<2°C Coordinated 1.5°C Societal Transformation	Under 2°C Coordinated and 1.5°C Societal Transformation, temperate regions face increasing land competition as climate action intensifies and yield growth remains at historic levels.					
1.5°C Innovation	Production is relatively higher as yield enhancing technologies increase the competitiveness of "Temperate" oil crops, by reducing land competition in Europe.					

Content

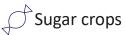
Scenarios and scope

Commodities Overview

Cereals

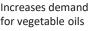
Oil Crops

Sugar Crops


Other Crops

Animal Products

Forest Products


Potential risk

Future opportunity

Key Drivers Key Trends \$ **Prices** Prices for sugar crops are 20%-60% higher ٠ **Diet shifts Population and Yield growth** Food waste under Historic Trends because food waste reductions **Income Growth** reductions cause demand growth to slow By 2050, average crop

Shifts in diets away from animal proteins will reduce the use of sugarcane for feed production

Reduces feed

By 2050, food waste will be reduced by 40-50% under climate transitions, leading to a substantial decrease in demand, particularly in highincome regions

Reduces land

competition

Population and • income growth causes increased demand, which leads to production increases across all scenarios

Increase demand for sugar crops

Reduces land competition due to higher yield crops

vields could increase

up to 69% globally.

Yield growth will

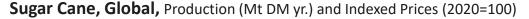
competition and

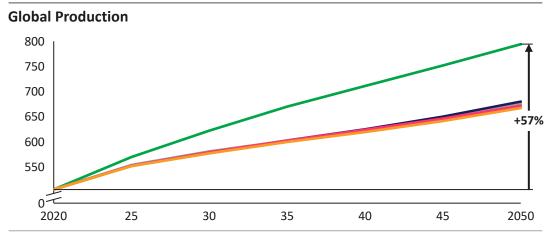
prices for sugar crops

reduce land

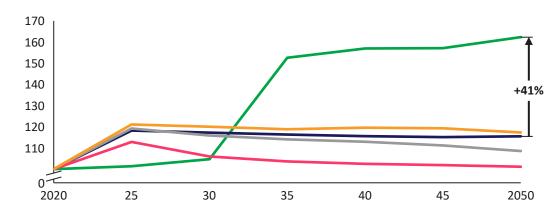
under transition scenarios

Production



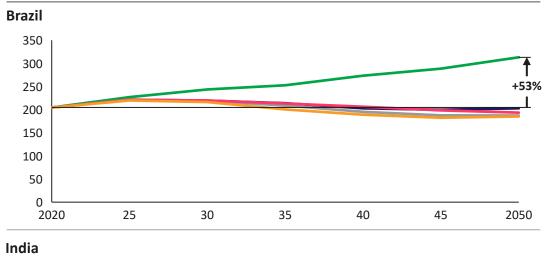

Sugar crop production increases with rising incomes and populations, but remains 11%-18% below Historic Trends in all climate transition scenarios due to food waste reductions and diet shifts

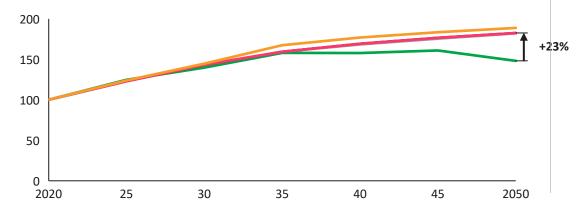
wbcsd


Sugar Cane: Reductions in food waste and first-generation bioenergy demand slow production growth under climate transitions

- >3°C Historic Trends <2°C IPR Forecast Policy 1.5°C Societal Transformation
- <2°C Coordinated 1.5°C Innovation

٩	Protected areas		Food waste reductions	\$	GHG Prices	<u>}-0</u>	Input efficiency		
9	Bioenergy pathway	()*	Diet shifts		Yield-enhancing tech	I			
Sce	nario-specific va	ues a	and rationale						
Sce	narios	Rat	ionale						
	3°C Historic rends		Global production incre incomes grow, leading expansion becomes mo competition, although increase is passed thro	to highe ore costly land is no	r demand for food. In around 2030 as lan ot as constrained in t	nitially chea d scarcity in	p, cropland creases		
TI	limate ransition cenarios		Production increases across most transition scenarios after 2020 as tropical regions are not as land constrained. Prices under transition scenarios increase above historical trends in the first decade, as climate policies and regulation increase pressure on the land use system.						
	<2°C Forecast Policy (IPR)		2°C IPR is lower than 2°C Coordinated because climate action is less ambitious in Brazil, India, Tropical Africa, and Southeast Asia, where sugar cane is largely produced.						
	<2°C Coordinated		2°C Coordinated has the second highest prices, as climate action is orderly and moderately ambitious, but there is no land use mechanism strong enough to fully offset its effect on land competition (e.g. productivity increase / demand reductions).						
	1.5°C Societal Transformation	٢	1.5°C Social Transform land constraints comin				ne additional		
I	1.5°C Innovation		1.5°C Innovation has the land competition broug not as strong as under	ght on by	ambitious climate a	iction and a			

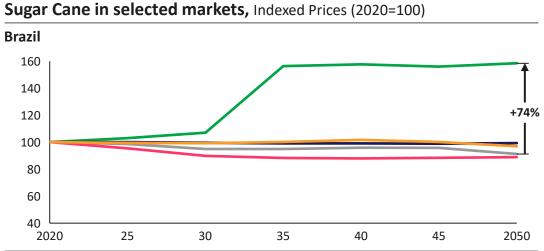

Sugar Cane: production trends by region


Sugar crops

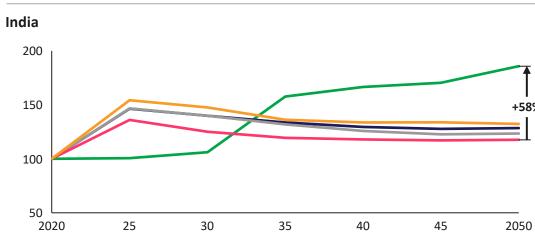
Sugar cane can be used to produce sugar and biofuels

- ->3°C Historic Trends -<2°C IPR Forecast Policy 1.5°C Societal Transformation
- -- <2°C Coordinated</p> 1.5°C Innovation

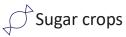
Sugar Cane in select markets, Production (Mt DM yr.)


A	Protected areas	tin	Food waste reductions	(\$)	GHG Prices	°0-0	Input efficiency	
ф С	Bioenergy pathway		Diet shifts		Yield-enhancing tech	đ		
Sce	enario-specific va	lues a	and rationale		-			
Sce	enarios	Rat	tionale					
	3°C Historic rends		Brazil: Sugar cane production follows demand and grows with population and income. India: Although sugar cane demand grows with population and income, production declines as the country becomes a net-importer.					
T	limate ransition cenarios		 Brazil: Production decreases due to a shift towards alternative proteins and a decline in feed demand. India: Under all action scenarios, tropical regions face addition land constraints due to area protection and climate policies a regulation. This leads to an increase in land and production confor most agricultural commodities, increasing the comparative advantage of Indian sugar cane relative to Historic Trends. Consequently, India becomes a net exporter and production increases. 					

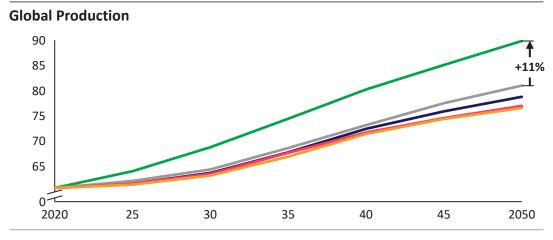
Sugar Cane: price trends by region

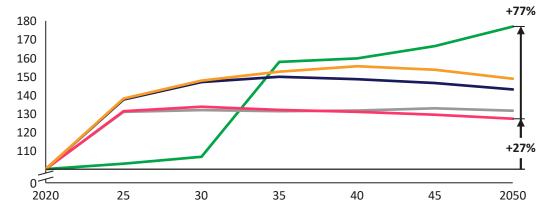

Sugar cane can be used to produce sugar as well as fuel

- ->3°C Historic Trends -<2°C IPR Forecast Policy 1.5°C Societal Transformation
- <2°C Coordinated</p> 1.5°C Innovation



Bioenergy pathw	ay 🆯	Diet shifts		Yield-enhancing tech		
Scenario-specif	ic values	and rationale				
Scenarios	Ra	tionale				
>3°C Historic Trends		Brazil and India: In more costly around although land is no increase is passed t	l 2030 a t as cor	as land scarcity incr instrained in tropical	eases co region	ompetition,
Climate Transition Scenarios	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Brazil: Prices under transition scenarios remain below Historic Trends, as demand stays flat throughout and technological innovation offsets the increase of transition costs.				
		India: Prices under historical trends in regulation increase in 2025 as technolo producers and decl	the firs [.] pressu ogical in	t decade, as climate re on the land use s novation helps red	e policie system.	s and Prices peal


wbcsd


Sugar Beet: Reductions in food waste and first-generation bioenergy demand slow production growth under climate transitions

- >3°C Historic Trends <2°C IPR Forecast Policy 1.5°C Societal Transformation
- <2°C Coordinated 1.5°C Innovation

Sugar Beet, Global, Production (Mt DM yr.) and Indexed Prices (2020=100)

٢	Protected areas	Ī	Food waste reductions	\$	GHG Prices	<u>}</u> 0	Input efficiency	
9	Bioenergy pathway	()*	Diet shifts		Yield-enhancing tech	1		
Sce	enario-specific val	ues a	and rationale					
Sce	enarios	Rat	tionale					
	3°C Historic rends		Global production incre grow, leading to higher becomes more costly a although land is not as passed through to farm	r demano iround 20 constraii	l for food. Initially ch 30 as land scarcity i ned in tropical region	ieap, croplan ncreases con	d expansion npetition,	
Τ	limate ransition cenarios		Production increases a regions are not as land above historical trends increase pressure on th	constrai in the fir	ned. Prices under tra st decade, as climat	ansition scen	arios increase	
	<2°C Forecast Policy (IPR)		2°C IPR is lower than 2°C Coordinated because climate action is less ambitious in large producing regions such as: Middle East & Northern Africa, Russia, and the Former Soviet Union, reducing land competition					
	<2°C Coordinated		2°C Coordinated has th moderately ambitious, fully offset its effect on reductions)	but ther	e is no land use mec	hanism stror	ng enough to	
	1.5°C Societal Transformation	٩	1.5°C Social Transform land constraints comin				e additional	
Ī	1.5°C Innovation		1.5°C Innovation has th land competition broug not as strong as under	ght on by	ambitious climate a	action and ar		

Content

Scenarios and scope

Commodities Overview

Cereals

Oil Crops

Sugar Crops

Other Crops

Animal Products

Forest Products

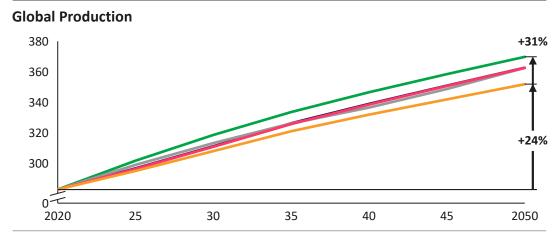
Cher Crops

bcsd

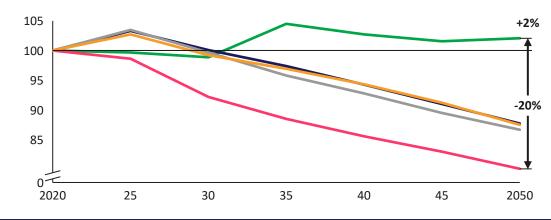
Four Other Crop commodities include Fruits, Vegetables, and Nuts, Potatoes, Pulses, and Tropical Fruits

Potential risk **—** Future opportunity

Key Drivers Key Trends \$ **Prices** Other Crops prices under transition scenarios ٠ **Yield growth Food waste reductions GHG** prices **Diet shifts** increase above Historic Trends in the first decade as climate policies increase pressure on the land Shifts in diets away By 2050, food waste GHG pricing will By 2050, average crop use system. from animal proteins will reduce 40-50% increase the cost of vields could increase will reduce the use of up to 69% globally under transition production, for feed production. under transition scenarios, leading to a particularly in substantial decrease in scenarios/regions with scenarios. Yield The need for protein • Production demand, particularly in high GHG prices growth will reduce alternatives will high-income regions land competition and Trends in production of Other Crops vary increase use of pulses prices, particularly in substantially by commodity: for food demand high-income regions Diet shift is a key driver for pulses' productions, • Increase as it increases demand and production Reduces land Increases demand Reduces land agricultural \$ for vegetable oils competition competition production costs Production of fruits, nuts and vegetables, potatoes and tropical roots is lower under transition scenarios as food waste reductions Reduces food Reduces feed lead to a decline in demand relative to Historic demand demand Trends

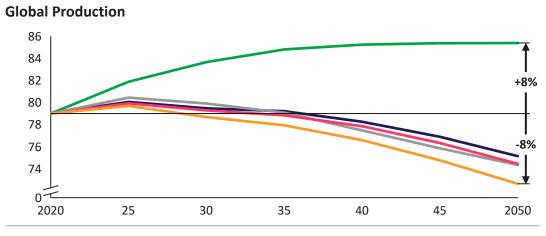


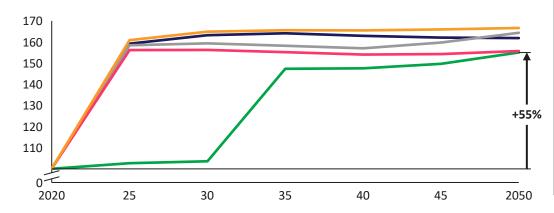
Fruits, Vegetables, and Nuts: Reductions in food waste slow production growth slightly under climate transitions


- Cher Crops

- >3°C Historic Trends <2°C IPR Forecast Policy 1.5°C Societal Transformation
- <2°C Coordinated 1.5°C Innovation</p>

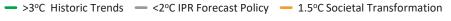
Fruits, Vegetables, and Nuts, Global, Production (Mt DM yr.) and Indexed Prices (2020=100)


A	Protected areas	tin	Food waste reductions	\$	GHG Prices	%-0	Input efficiency
ф С	Bioenergy pathway		Diet shifts	 	Yield-enhancing tech	đ	,,
Sce	nario-specific val	ues a			0		
Sce	narios	Rat	tionale				
>3°C Historic Trends Global production increases linearly from 2020-201 population and income grow, leading to higher der Land competition dynamics create price fluctuation expansion becomes expensive around 2030, requir investments in expensive yield-enhancing technolo practices. After 2035, prices stabilize above 2020 le productivity growth benefits from the investments reducing land conversion costs.					dema ations: equirin nologi 20 leve	nd for food. land g additional es and els as	
Tı	limate ransition cenarios		Production increases from 2020-2050 under the transition scenarios as population and income grow. In the first decac Prices remain above Historic Trends, as climate policies har land constraints and demand grows. Food waste reductions however, bring demand growth below Historic Trends, with positive effect on long term land competition and prices, w decline below 2020 levels after 2030.				decade, es harshen uctions, s, with a
	1.5°C Innovation		Prices decrease from land competition and		-2050 high producti conversion costs.	vity gro	owth reduces


Potatoes: Reductions in food waste slow production growth under climate transitions

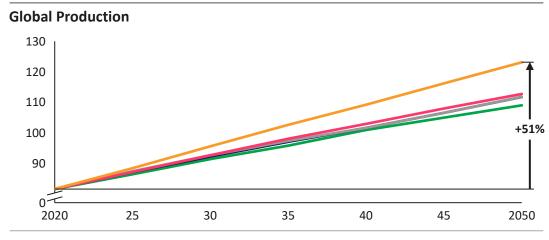
- >3°C Historic Trends <2°C IPR Forecast Policy 1.5°C Societal Transformation
- <2°C Coordinated 1.5°C Innovation

Potatoes, Global, Production (Mt DM yr.) and Indexed Prices (2020=100)

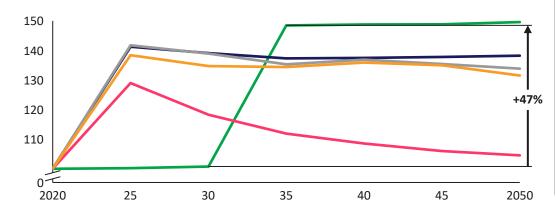

٢	Protected areas	Î	Food waste reductions	\$	GHG Prices	<u>}</u>	Input efficiency
9	Bioenergy pathway	()*	Diet shifts		Yield-enhancing tech		
Sce	nario-specific v	alues a	and rationale				
Sce	narios	Rat	ionale				
	3°C Historic rends			n popula	vith population and i ation in key markets, demand.		•
Tı	limate ransition cenarios		production levels b demand growth lea	elow Hi ads to a eases la	nper demand growt storic Trends. Neve substantial increase nd conversion costs	rtheles in prio	ss, the initial ces, as
			Around 2025, the combination of waste reductions and diet shi away from animal products offset the effect of population and income growth, leading to a decline in demand. As a consequence, production declines below 2020 levels across all transition scenarios and prices stabilize at their 2025 levels.				

🕸 wbcsd

- Other Crops

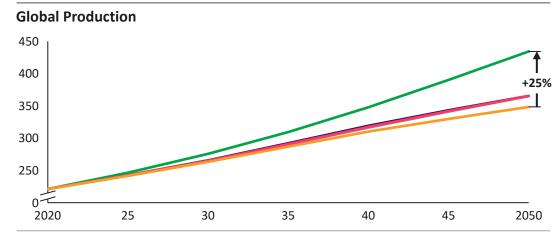

Pulses: Despite food waste reductions, production grows faster under climate transitions as diets shifts towards plant-based proteins such as pulses

- Cher Crops

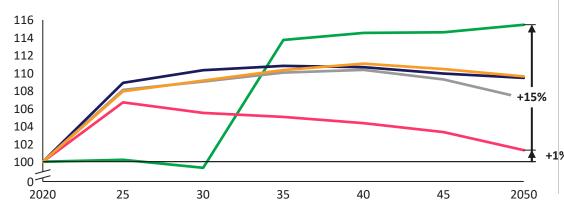


- <2°C Coordinated - 1.5°C Innovation</p>





٢	Protected areas	Î	Food waste reductions	\$	GHG Prices	<u>}-</u> -	Input efficiency		
G	Bioenergy pathway	<u> </u>	Diet shifts		Yield-enhancing tech	Ū			
Sce	enario-specific va	lues a	and rationale						
Sce	enarios	Rat	tionale						
	3°C Historic rends		Global production increases linearly from 2020-2050 as population a income grow, leading to higher demand for food. Initially cheap, cropland expansion becomes more costly around 2030 as land scarc increases competition. The cost increase is passed through to farmga prices.						
T	limate ransition cenarios	()* ()	Production increases to diet shifts and the which are not as land Prices under transitio first decade, as clima land use system.	fact the l constra on scena	largest producers a ained, leading to red rios increase above	re tropica luced land historica	al regions, d competition. l trends in the		
	1.5°C Societal Transformation	<u>s</u>	Production increases due to high diet shifts, as pulses are a key prote substitute. Prices remain relatively flat after 2025 as demand contin to grow increasing land competition.						
	1.5°C Innovation	a	Prices decrease beca reduced diet shift als			es land co	ompetition. A		


Tropical Roots: Reductions in food waste slow production growth under climate transitions

- >3°C Historic Trends <2°C IPR Forecast Policy 1.5°C Societal Transformation
- <2°C Coordinated 1.5°C Innovation

4	Protected areas	ħ	Food waste reductions	\$	GHG Prices	°	Input efficiency	
q 	 Bioenergy pathway 		Diet shifts		Yield-enhancing tech	000	input efficiency	
-7 Si	cenario-specific val	lues a			heid enhancing teen			
_	cenarios		tionale					
I	>3°C Historic Trends		grow, leading to highe becomes more costly	er deman around 2 s constrai	early from 2020-2050 a d for food. Initially chea D30 as land scarcity incr ned in tropical regions. ces.	p, cropla eases co	nd expansion mpetition,	
	Climate Transition Scenarios		regions are not as land	constrain in the fir	st transition scenarios a ned. Prices under transi st decade, as climate po se system.	tion scer	arios increase	
	<2°C Forecast Policy (IPR)		in Tropical Africa and S	2°C IPR is lower than 2°C Coordinated because climate action is less ambitious in Tropical Africa and Southeast Asia, where tropical roots are largely produced, reducing land competition				
	<2°C Coordinated		moderately ambitious,	but ther	highest prices, as clima e is no land use mechan npetition (e.g. producti	ism stro	ng enough to	
	1.5°C Societal Transformation	٢			the highest prices becanning the highest prices becanning the second stress protection the second stress becanning the second stress becond st		ne additional	
%	1.5°C Innovation			ght on by	price as the yield grow ambitious climate action cietal Transformation.			

👸 wbcsd

- Other Crops

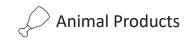
Content

Scenarios and scope Commodities Overview

Cereals

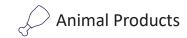
Oil Crops

Sugar Crops


Other Crops

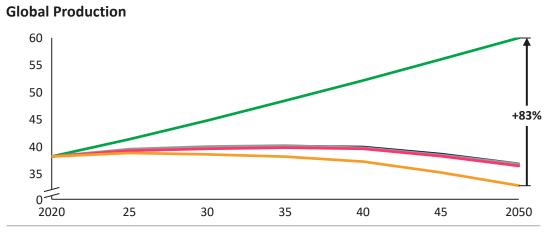
Animal Products

Forest Products

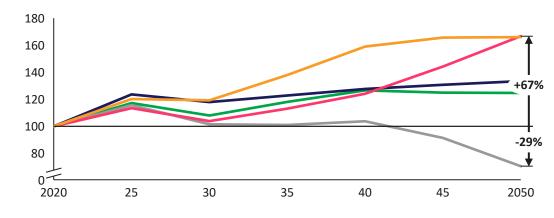

Potential risk **Future opportunity**

Key Drivers Key Trends \$ **Prices** Population and income growth drive ٠ **Diet shifts** Area protection **GHG** pricing demand for animal products but price trends vary substantially by commodity By 2050, up to 50% of global GHG prices could range from Shifts in diets away from ٠ ٠ and scenario, and over time. Variations land area could be protected, USD\$100–153 / ton CO2e by animal proteins will cause a limiting the availability of land 2050, increasing the prices of decrease in production of are driven by a combination of diet shifts, for raising animals and emission intensive proteins conventional proteins. GHG prices, and area protection. producing their feed Poultry emerges as a substitute Production Increases costs of producing animal Increases costs of producing animal Increases demand for products (land) products (GHG pricing) alternative proteins Production of emissions intensive beef ٠

Reduces feed demand


declines across all transition scenarios. Production of less emissions intensive poultry increases, acting as a substitute.

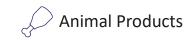
Beef, Sheep, and Goat: Rising GHG emissions costs and diet shifts under climate transitions lead to long-term production declines



->3°C Historic Trends - 2°C Coordinated - 2°C IPR Forecast Policy - 1.5°C Innovation - 1.5°C Societal Transformation

Beef, Sheep, and Goat, Global, Production (Mt DM yr.) and Indexed Prices (2020=100)

Global Prices



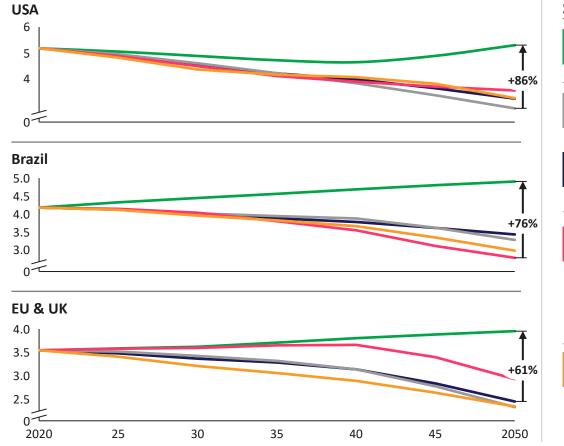
Scenario-specific values and rationale

Scenarios	Rationale
>3°C Historic Trends	Beef, Sheep and Goat production increases with population and income. Price remain stable, though the fluctuation in prices of crop commodities used for feed production is visible between 2025 and 2040.
Climate Transition Scenarios	Beef, sheep, and goat production decreases across all transition scenarios. Die shifts cause decrease demand, the highest occurring under the 1.5°C Societal Transformation scenario. Prices shifts vary across specific transition scenarios.
<2°C Forecast Policy (IPR)	Under the 2°C IPR scenario, key beef producers, such as Brazil, do not face stringent climate policies and regulations reducing costs for producers and farmgate prices.
<2°C Coordinated	Under the 2°C Coordinated scenario, there is more unified policy and regulation, causing an increase in cost for producers and farmgate prices in al regions.
1.5°C Societal Transformation	Under both 1.5°C scenarios, emission costs directly affect the price of beef, ar emission intensive commodity (both for its links to deforestation and for the methane emissions produced from enteric fermentation).
1.5°C Innovation	Under, the 1.5°C Innovation scenario the price is lower until 2050 because yie growth reduces feed prices and area protection is lower.

🕸 wbcsd

Beef, Sheep and Goat: production trends by region

Beef, sheep and goat is a significant source of protein in many regions


- >3°C Historic Trends <2°C Forecast Policy (IPR) 1.5°C Societal Transformation
- <2°C Coordinated 1.5°C Innovation

Protected areas Bioenergy pathway

Food waste reductions

S--- Input efficiency

Beef, sheep and goat in selected markets, Production (Mt DM yr.)

Scenarios	Rationale
>3°C Historic Trends	Growth in ruminant meat production follows historic trends and exports increase from these regions to emerging and low-income economies as their meat demand increases.
<2°C Forecast Policy (IPR)	USA, Brazil, Europe, & UK: A medium diet shift reduces production. In the US, net exporter, the difference in production between IPR and the Coordinated scenario is more evident. This is because under IPR the US is subject to more
<2°C Coordinated	climate policy and regulation relative to its neighbors, leading to increased lan competition and agricultural production costs. These conditions reduce the region's competitive advantage, resulting in a decline in exports and productic larger than under Coordinated action.
1.5°C Innovation	USA and Brazil: A medium diet shift decreases production. Brazil loses some of its exports as yield growth in high-income regions increases their competitive advantage.
	EU & UK: Production continues at historic rates through 2040, as yield- enhancing technologies reduce land competition in Europe, increasing the region's competitive advantage and exports. After 2040, the medium diet shift offsets the increase in exports leading to a reduction in production.
1.5°C Societal	USA, EU, & UK: A high diet shift decreases ruminant meat production
Transformation	Brazil: Brazil hosts some of the highest carbon dense and biodiverse forests globally. Regulation to halt deforestation and incentives for land restoration increases the production costs of most meat commodities, reducing their production. A high diet shift decreases production even more.

GHG Prices

Beef, Sheep and Goat: price trends by region

Beef, sheep and goat meat is a significant source of protein in many regions

- >3°C Historic Trends <<2°C Forecast Policy (IPR) 1.5°C Societal Transformation
- <<2°C Coordinated

USA 140

120

100

Brazil

400

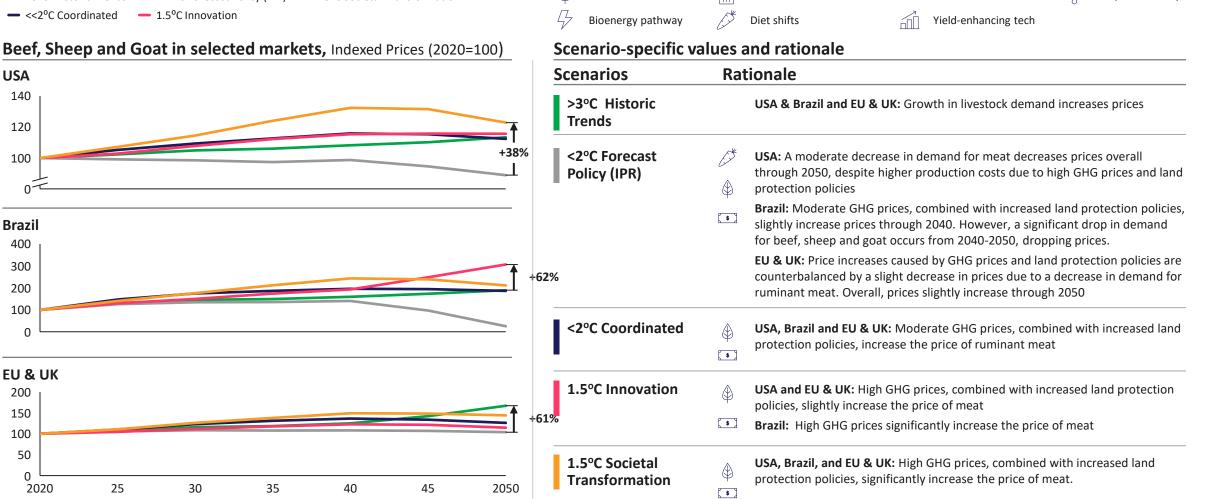
300

200

100

200

150


100 50

0

2020

0

0

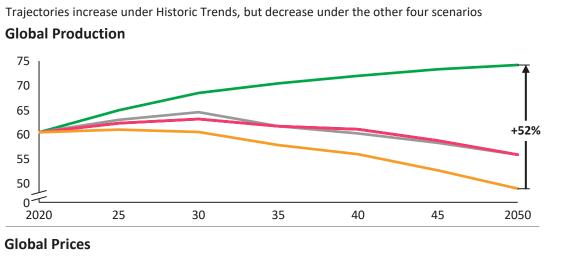
Protected areas

Food waste reductions

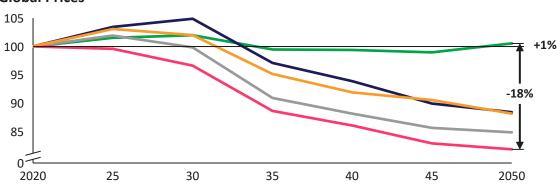
Ъ-0

Input efficiency

GHG Prices


\$

Pork: Under transition scenarios, diet shifts away from animal products reduce pork demand and production below 2020 levels



Pork is an important source of protein in many regions, particularly in China and the EU

- >3°C Historic Trends - 2°C Coordinated - 2°C IPR Forecast Policy - 1.5°C Innovation - 1.5°C Societal Transformation

Pork, Global, Production (Mt DM yr.) and Indexed Prices (2020=100)

Scenario-specific values and rationale

Scenarios	Rationale
>3°C Historic Trends	Growth in livestock production increases with incomes and population. Prices remain stable, as lack of climate action keeps prices low for key producers (e.g., China).
Climate Transition Scenarios	In the first decade, the diet shifts away form livestock products hampers demand growth, leading to a decline in production. As the effect of diet shifts put downward pressure on demand for pork, both prices and production stabilize.
<2°C Coordinated 1.5°C Societal	Under 2°C Coordinated and 1.5°C Societal Transformation, key producers, such as the EU, Greater China and Southeast Asia, face increasing land competition as climate action intensifies and yield growth remains at historic levels. This increases prices above Historic Trends, as high land conversion and emission
Transformation	costs are passed through to the consumer. Between 2030 and 2035, the demand reductions from the diet shift away from animal proteins are enough to offset the effect of land competition on prices, which start declining.

🕸 wbcsd

Pork: production trends by region

- ->3°C Historic Trends -<2°C Forecast Policy (IPR) 1.5°C Societal Transformation
- -- <2°C Coordinated</p> 1.5°C Innovation

Pork in selected markets, Production (Mt DM yr.)

m Protected areas Food waste reductions パッ Diet shifts Bioenergy pathway

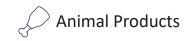
٢

[]

Yield-enhancing tech

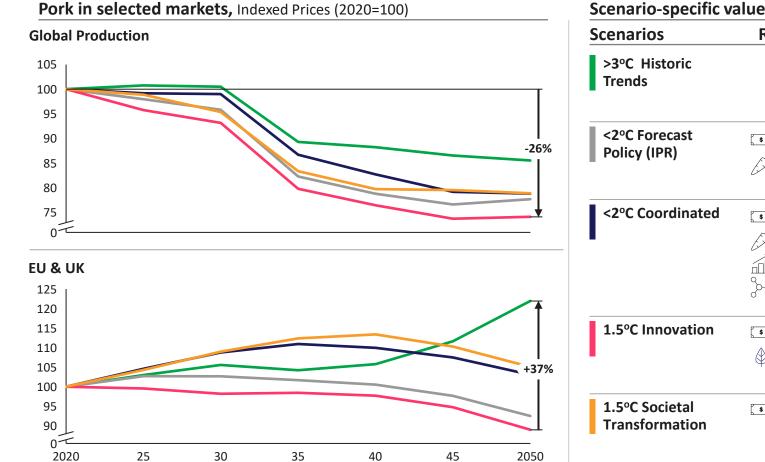
GHG Prices

→ Input efficiency


Global Prod	uction						Scenarios
40							>3°C Historic Trends
35						+58%	
30							<2°C Forecast Policy (IPR)
25							
20							<2°C Coordinate
EU & UK							
14							
12						-26%	1.5°C Innovation
10						1	
8							
6							1.5°C Societal
4							Transformation
2							
0							
2020	25	30	35	40	45	2050	

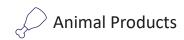
Scenarios	Rat	tionale
>3°C Historic Trends		Greater China: Growth in production follows historic trends. EU & UK: Growth in pork production remains stable around 2020 levels until 2045, when land constraints in Europe increase the price of pork and reduce its exports. follows historic trends
<2°C Forecast Policy (IPR)	Ø	Greater China: Growth in production continues at a slower rate through 2040 and then falls due to <i>moderate</i> diet shifts.
		EU & UK: Production follows historic trends through 2030 and then falls due to a <i>moderate</i> diet shift
<2°C Coordinated	Ú*	Greater China: Growth in production continues at a slower rate through 2040 and then falls due to <i>moderate</i> diet shifts
		EU & UK: Production falls due to a moderate diet shift
1.5°C Innovation	Ŭ.	Greater China: Growth in production continues at a slower rate through 2040 and then falls due to <i>moderate</i> diet shifts
		EU & UK: Production follows historic trends through 2030 and then falls due to a <i>moderate</i> diet shift
1.5°C Societal Transformation	C*	Greater China: Growth in production continues at a slower rate through 2035 and then falls due to <i>high</i> diet shifts
_		EU & UK: Production falls due to a <i>high</i> diet shifts

Pork: price trends by region



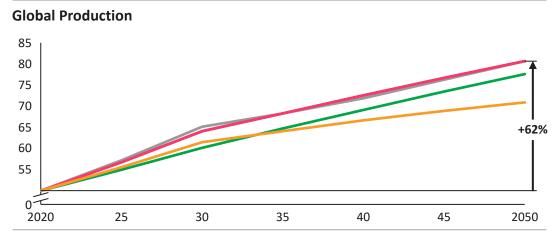
Pork is an important source of protein in many regions, particularly China and the EU

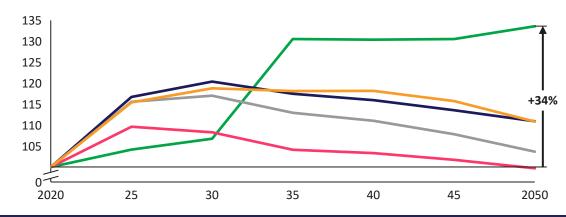
- >3°C Historic Trends <2°C Forecast Policy (IPR) 1.5°C Societal Transformation
- <2°C Coordinated 1.5°C Innovation


Protected areas	Ī	Food waste red
Bioenergy pathway	1 the	Diet shifts

Solution Input efficiency

٢	Protected areas		Food waste reductions	\$	GHG Prices	~~~	Input efficiency	
\$	Bioenergy pathway	()*	Diet shifts		Yield-enhancing tec	h		
Sce	nario-specific va	alues	and rationale					
Sce	narios	Ra	tionale					
>3°C Historic			EU & UK: Growth in li	vestoc	demand increase	es price		
Tr	rends		Greater China: Livestock demand decreases with a decrease in population, decreasing prices					
<2°C Forecast Policy (IPR)		\$	EU & UK and Greater China: A moderate increase in GHG prices raises					
		()*	pork prices, but a moderate decrease in demand for pork meat decreases prices overall					
<2°C Coordinate	2°C Coordinated	\$	Greater China: A mod		•			
		()*	moderate decrease in demand for pork meat decreases prices overall EU & UK: Moderate increases in agricultural innovation combined with a					
		Â	decrease in demand for pork meat decreases prices, but a moderate					
		<u>}</u> -0	GHG price increases prices slightly overall					
1.5°C Innovation		\$	USA and EU & UK: Hi	-	•		ased land	
		٢	protection policies, sl	0,	•			
		т	Brazil: High GHG price	es slight	ly increase the pr	ice of meat		
	5°C Societal	\$	EU & UK and Greater		•	ncrease pri	ces despite a	
Tı	ransformation		high decrease in dem	and for	pork.			


Poultry: Production grows faster under most climate transitions as poultry is a lower emissions substitute for beef

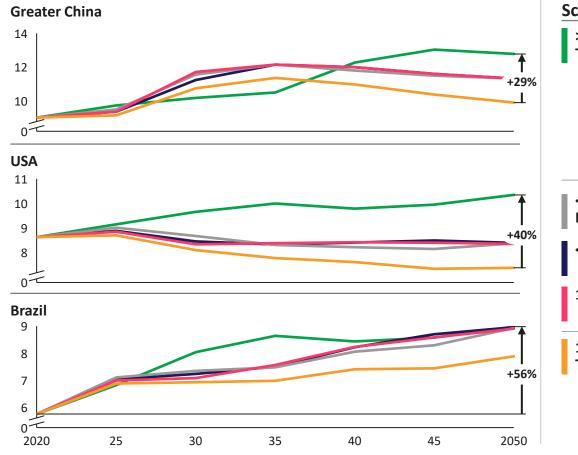

These increases are somewhat dampened in later years as plant-based proteins gain relative production share.

->3°C Historic Trends - 2°C Coordinated - 2°C IPR Forecast Policy - 1.5°C Innovation - 1.5°C Societal Transformation

Poultry, Global, Production (Mt DM yr.) and Indexed Prices (2020=100)

Global Prices

cenarios	Rationale
>3°C Historic Trends	Global production increases linearly from 2020-2050 as population and income grow, leading to higher demand for food. Initially cheap, cropland expansion becomes more costly around 2030 as land scarcity increases competition. The cost increase is passed through to farmgate prices.
Climate Transition Scenarios	Production increases across all transition scenarios after 2020 as poultry serves as an interim substitute for proteins contributing high emissions (e.g., beef). The line begins to flatten for the 1.5°C Social Transformation as there is a higher diet shift. Prices under transition scenarios increase above historical trends in the first decade, as climate policies and regulation increase pressure on the land use system
<2°C Forecast Policy (IPR)	2°C IPR is lower than 2°C Coordinated because climate action is less ambitious in Brazil, India, Tropical Africa, and Southeast Asia, where sugar cane is largely produced, reducing land competition
<2°C Coordinated	2°C Coordinated has second highest prices, as climate action is orderly and moderately ambitious, but there's no land use mechanism to fully offset its effect on land competition (e.g. productivity increase / demand reductions)
1.5°C Societal Transformation	1.5°C Societal Transformation has the highest prices because of the additional land constraints coming from ambitious area protection
1.5°C Innovation	1.5°C Innovation has the lowest price as the yield growth offsets the increase in land competition brought on by ambitious climate action and area protections not as strong as under 1.5°C Societal Transformation.


Poultry meat: production trends by region

Poultry meat is a significant source of protein in many regions

- >3°C Historic Trends <2°C Forecast Policy (IPR) 1.5°C Societal Transformation
- <2°C Coordinated 1.5°C Innovation

wbcsd

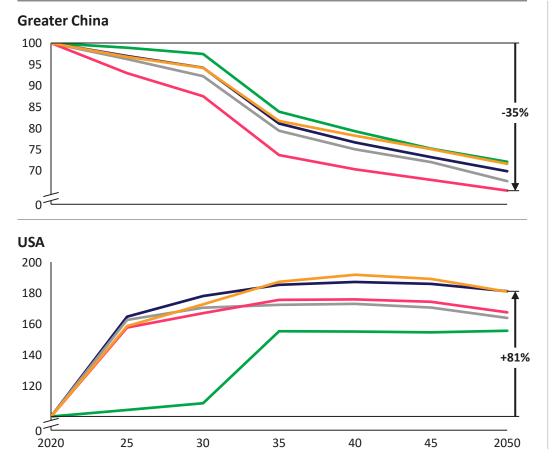
Poultry Meat in selected markets, Production (Mt DM yr.)

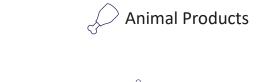
Scenario-specific values and rationale

٢

4

Scenarios	Rationale					
>3°C Historic Trends		Greater China: The region switches from being a net-importer to a net exporte around 2035, leading to a substantial growth in production. Although domestic demand for poultry peaks in 2045 with population, exports remain stable, mitigating the effect on production which remains stable through 2050.				
		USA: Poultry production follows historic trends. After 2040, the growth in demand from neighboring emerging economies, increases US exports and production.				
		Brazil: Production growth slows after 2035 as demand and exports stabilize.				
<2°C Forecast Policy (IPR) <2°C Coordinated	L*	Greater China: Production of poultry meat grows between 2020 and 2030 as poultry is an interim substitute to emission-intensive meat products. After 2030, the growth in uptake of meat alternatives stabilizes annual demand and production levels				
		USA: Production declines due to moderate diet shifts				
1.5°C Innovation		Brazil: Production of poultry meat grows as poultry is an interim substitute to emission-intensive meat products				
1.5°C Societal Transformation	C*	Greater China: Production of poultry meat grows between 2020 and 2030 as poultry is an interim substitute to emission-intensive meat products. After 2030, the growth in uptake of meat alternatives stabilizes annual demand and production levels				
		USA: Production declines due to moderate diet shifts				
		Brazil: Production of poultry meat grows as poultry is an interim substitute to emission-intensive meat products				



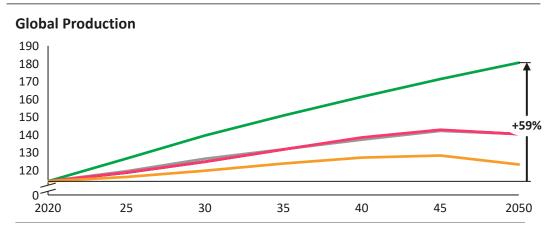

Poultry meat: price trends by region

Poultry meat is a significant source of protein in many regions

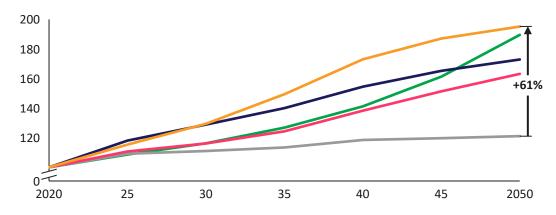
- >3°C Historic Trends <2°C IPR Forecast Policy 1.5°C Societal Transformation
- <2°C Coordinated 1.5°C Innovation

Poultry Meat in selected markets, Indexed Prices (2020=100)

(Protected areas	Ī	Food waste reductions	\$ GHG Prices	<u>}-</u> -	Input efficiency
6	Bioenergy pathway	()*	Diet shifts	Yield-enhancing tech		


Scenarios	Rationale				
>3°C Historic Trends	Greater China: Livestock demand decreases with a decrease in population, which lower prices USA: To increase production, agricultural land expands without much investment in productivity and efficiency. After 2030, the pressure on the land use system pushes prices up.				
<2°C Forecast Policy (IPR)	 Greater China: Livestock demand decreases with a decrease in population combined with diet shifts and an increase in agricultural innovation, decreasing prices USA: Growth in poultry demand as consumers switch from beef due to a medium diet shift combined with GHG prices implemented after 2030 increases prices 				
<2°C Coordinated	 Greater China: Livestock demand decreases with a decrease in population combined with diet shifts and an increase in agricultural innovation, decreasing prices USA: Growth in poultry demand as consumers switch from beef due to a medium diet shift combined with moderate GHG prices increases prices 				
1.5°C Innovation	 Greater China: Livestock demand decreases with a decrease in population combined with diet shifts and an increase in agricultural innovation, decreasing prices despite high GHG prices USA: Growth in poultry demand as consumers switch from beef due to a medium diet shift combined with high GHG prices increases prices, but is offset by large gains in agricultural innovation 				
1.5°C Societal Transformation	 Greater China: Livestock demand decreases with a decrease in population combined with diet shifts and an increase in agricultural innovation, decreasing prices USA: Growth in poultry demand as consumers switch from beef due to a high diet shift combined with high GHG prices increases prices 				

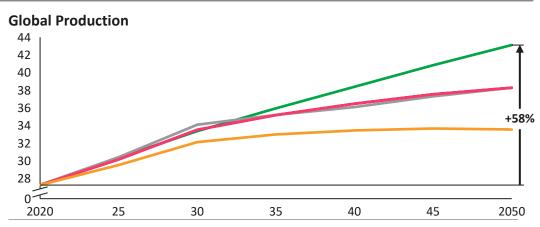
Dairy: Production is relatively lower under climate transitions as consumers shift diets away from animal products



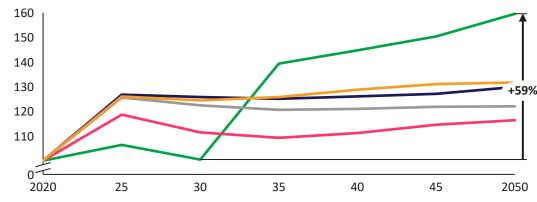
- >3°C Historic Trends 2°C IPR Forecast Policy 1.5°C Societal Transformation
- 2°C Coordinated 1.5°C Innovation

Dairy, Global, Production (Mt DM yr.) and Indexed Prices (2020=100)

Global Prices


cenarios	Rationale				
>3°C Historic Trends	Growth in livestock production increases with incomes and population. Prices increase even in absence of climate action, as land competition forces South Asian regions to meet demand through expensive imports.				
Climate Transition Scenarios	The diet shifts away form livestock products hampers demand growth, leading to a decline in production after 2045. As demand grows across all scenarios, prices grow above 2020 levels.				
<pre><2°C Forecast Policy (IPR)</pre>	Prices remain low in the 2°C Forecast Policy Scenario, as lack of policy action in key producing regions like India and South Asia coupled with lower demand for dairy reduce pressure on dairy producers and land competition.				
1.5°C Innovation	Price growth is lower than Historic Trends, as higher productivity and lower demand for dairy products reduce land competition and pressure on dairy producers.				

Eggs: Production is relatively lower under transition scenarios as diets shift away from animal proteins


[>] Animal Products

- >3°C Historic Trends 2°C IPR Forecast Policy 1.5°C Societal Transformation
- 2°C Coordinated 1.5°C Innovation

Eggs, Global, Production (Mt DM yr.) and Indexed Prices (2020=100)

Scenarios	Rationale			
>3°C Historic Trends	Growth in livestock production increases with incomes and population. Initially cheap, cropland expansion becomes more costly around 2030 as land scarcity increases competition. The cost increase is passed through to farmgate prices.			
Climate Transition Scenarios	Because of the interim use of poultry as a substitute for emission intensive meats, eggs production declines below Historic Trends only under 1.5°C Societal Transformations before 2030.			
	In the first decade, prices under the transition scenarios increase above Historic trends as climate policies and regulation increase pressure on the land use system. As the effect of diet shifts puts downward pressure on demand for eggs, both prices stabilize.			
1.5°C Innovation	Prices are lowest under 1.5°C Innovation due to increased yields reducing land competition.			

Content

Scenarios and scope

Commodities Overview

Cereals

Oil Crops

Sugar Crops

Other Crops

Animal Products

Forest Products

Potential risk Future opportunity

Key Drivers

Area protection

By 2050, up to 50% of • global land area could be protected, limiting the availability of land for agricultural and forestry production.

GHG pricing

 GHG prices could range from USD\$100-153 / ton CO2e by 2050, creating both costs and new revenue streams.

Bioenergy

Bioenergy production could reach over 100 EJ by 2050 to accommodate the growth in BECCS and biofuels, limiting land availability and creating additional competition among uses for forest products

Increases land

Yield growth

By 2050, average crop yields could increase up to 69% globally unde transition scenarios, dampening the impact of increased land competition between food, fuel, and forest products.

Key Trends

Production

- Increased GHG prices under transition ٠ scenarios can incentivize additional demand for timber products in construction.
- Productivity growth under the 1.5°C Innovation scenario increases land availability and timber production capacity.

Increases land competition

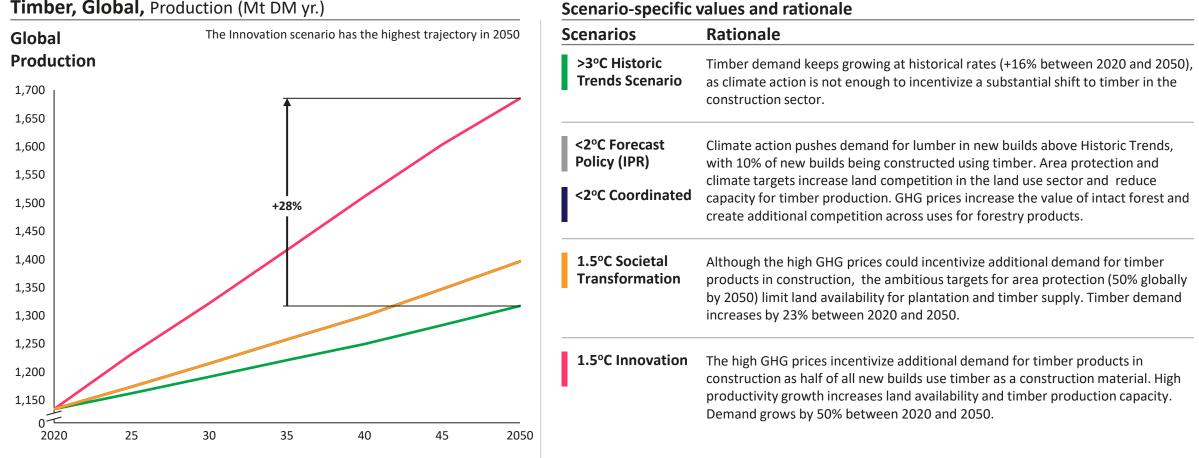
Creates new revenue streams (e.g, carbon credits)

production costs of

forest products

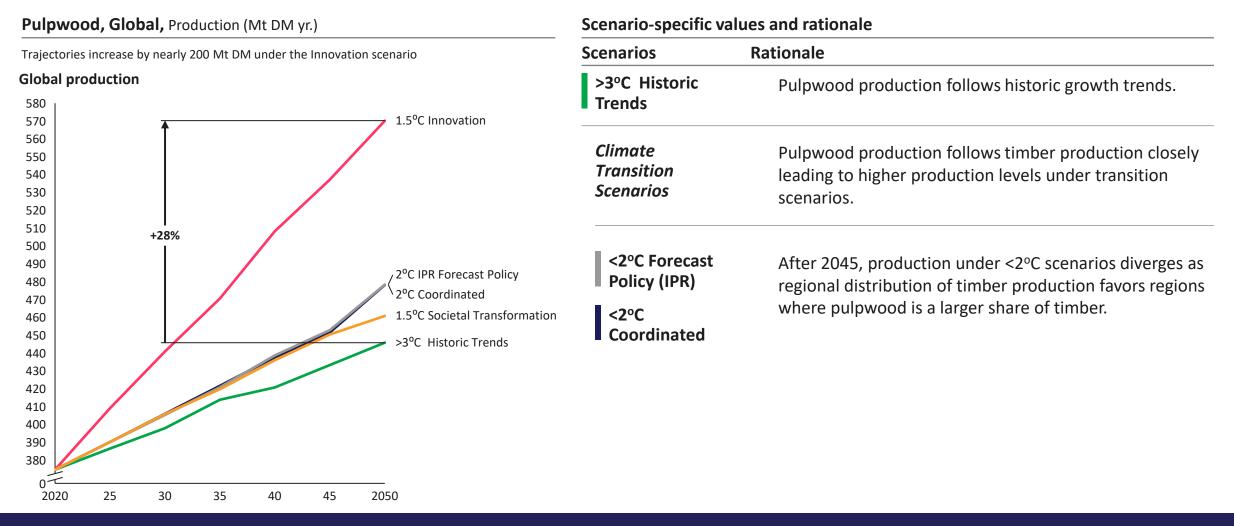
Increases

competition


competition increasing capacity for forest

Timber: Production is relatively higher under transition scenarios as demand from the sustainable construction activity rises

- ->3°C Historic Trends 2°C IPR Forecast Policy 1.5°C Societal Transformation
- 2°C Coordinated 1.5°C Innovation


Timber, Global, Production (Mt DM yr.)

Pulpwood: Production is relatively higher under transition scenarios as demand for bio-based products rises

Forest Products

Pulpwood is mostly used to produce food and fuel

wbcsd) 🕲